Preparation of Transition Metal Nitrides using Unusual Routes

Franck Tessier, Roger Marchand and Yves Laurent

Laboratoire des 'Verres et Céramiques', UMR 6512 CNRS Université de Rennes 1, 35042 Rennes Cedex, France

Two new methods are described to prepare transition metal nitrides. The first one is an original route using sulphides as nitridation precursors. As an illustration, heating MoS_2 *and* WS_2 *under ammonia flow forms new molybdenum and tungsten nitride phases. The second method deals with the reaction of alkaline ternary oxides with ammonia which, in the case of the niobates* $ANb₃O₈$ *(A = Li, Na, K), gives* access to LiNb₃N₄ and Nb₄N₅. © 1997 Elsevier *Science Limited.*

1 Introduction

Transition metal nitrides attract considerable attention in several application domains, especially in heterogeneous catalysis, when they present high specific surface areas. Except for γ -Mo₂N, W₂N and VN, the nitridation of an oxide (oxide + $NH₃$) \rightarrow nitride + H₂O[†]) is generally unfavourable to produce high surface area powders; water vapour is generated during the reaction and can cause sintering. A new route to prepare nitrides has been developed using sulphides as starting products. The reaction has been applied first to the preparation of δ -MoN type nitride phases from $MoS_2^{1,2}$ and then extended to other transition metal elements: W, Cr and Ti.

On the other hand, alkaline and transition metal ternary oxides offer potentialities as nitridation precursors of transition metal nitrides. $LiMO₃$ and $LiM₃O₈$ vanadates, niobates and tantalates were recently reacted with ammonia giving rise to a series of new mixed-valence oxynitrides with cubic NaCl structure.^{3,4} In this paper, we have pursued this study and shown that $LiNb₃O₈$ can lead to the ternary nitride $LiNb₃N₄$, whereas NaNb₃O₈ and $KNb₃O₈$ react to form the binary nitride $Nb₄N₅$.

Abstract 2 **Use of Sulphides as Nitridation Precursors**

2.1 Preparation of high surface area precursors in molten salt medium

Previous works have shown the possibility to prepare $MoS₂$ in potassium thiocyanate melt from MO_{3} or $Na_{2}MoO_{4}$ ⁵ The experimental procedure consists in mixing intimately the starting product with a large excess of KSCN $(T_f = 177^{\circ}C)$. The mixture is placed in a quartz tube, slowly heated $(1^{\circ}$ Cmin⁻¹) up to 350°C in a muffle furnace. $Na₂MoO₄$ slowly dissolves at 200°C to give a yellow to red melt. At 35O"C, a black precipitate is formed. $MoO₃$ is found to be more reactive since a black solid commences to precipitate as low as 200°C. The step temperature is maintained approximately during 15 h. After cooling, water soluble compounds are removed and the recovered powder is dried a few hours at 60°C then 110°C under vacuum. The main results of this study are indicated in Table 1. Under our conditions, only $MoS₂$ (JCPDS file 37-1492) precipitates and the reaction of $MoO₃$ appears to be more favourable to obtain high surface areas.^{1,2} After adjustment of the reaction parameters, specific surface areas higher than $200 \,\mathrm{m}^2 \mathrm{g}^{-1}$ are usually obtained, which are useful in catalytic applications.⁶ Chemical analysis of sulphur, performed in a LECO analyser, is in good agreement with the $MoS₂$ calculated value and the oxygen content is found lower than 2 wt%. The corresponding $MoS₂$ morphology is illustrated by the SEM micrograph of Fig. 1.

Following a similar process, WS_2 can be prepared from $WO₃$. However, the reaction must be carried out in NaSCN, rather than in KSCN, which melts at a higher temperature $(T_f = 287^{\circ} \text{C})$. WS_2 (JCPDS file 08-0237) is prepared at 550°C with a specific surface area of $30 \text{ m}^2 \text{ g}^{-1}$. Under our operating conditions, no sulphide is obtained from chromium, titanium or niobium binary oxides either in KSCN or NaSCN melt, but $Na₂CrO₄$ reacts with KSCN to give $NaCrS₂$.

Table 1. Molten KSCN synthesis of MoS₂

Precursor	Bath temperature $(^{\circ}C)$	XRD analysis	$Sg(m^2g^{-1})$	
Na ₂ MoO ₄	350	Poor crystalline $MoS2$	10	
MoO ₃	300	Amorphous	190	
MoO ₃	350	Poor crystalline $MoS2$	$>$ 200	

Table 2. Charaterizations of L-MoN and H-MoN

2.2 Nitridation of sulphide precursors

The general reaction of ammonia with a sulphide can be written as follows, with $H₂S$ gas formation:

$$
\mathbf{MS_x} \xrightarrow{\mathbf{NH_3}} \mathbf{MN_v} + x\mathbf{H_2S} \uparrow
$$

The study has been carried out with two starting materials, commercial sulphides with low surface area and higher surface area precursors prepared in molten thiocyanate medium.

2.2.1 Nitridation of MoS₂

2.2.1.1 Commercial MoS₂ Depending on the reaction conditions, two different nitrides, closely related to δ -MoN type are obtained (Table 2). L-MoN is prepared at lower temperature (750°C) than H-MoN $(850^{\circ}C)^{1,2}$ Other nitridation parameters such as reaction time, ammonia flow rate and thickness of $MoS₂$ powder in the alumina boat must also be precisely controlled in order to avoid mixtures $L-MoN + H-MoN$ at these temperatures.

Fig. 1. $MoS₂ SEM micrograph (\times 40000).$

Neither of the two phases contains sulphur. The experimental formulations for L- and H-MoN are, respectively, close to $Mo₅N₆$ and MoN compositions (N wt% calc. for MoN: 12.74). Figure 2 displays the L-MoN and H-MoN XRD patterns. Comparison of the X-ray diffraction data with &MoN JCPDS file points out a similarity in the case of H-MoN except for the presence of a few extra weak peaks. In the case of L-MoN, the presence of other extra weak peaks is accompanied by a shift towards larger diffraction angles. The XRD patterns can be indexed in hexagonal unit cells (Table 3). There are close relationships with the δ -MoN unit cell described by Bezinge *et aL7* A neutron diffraction study is now in progress in order to determine the nitrogen atomic positions. The nitridation of commercial MoS₂ (3 m² g⁻¹) leads to an increase in the surface area; the lower the reaction temperature, the higher the surface area. BET surface area values are $16 \text{ m}^2 \text{ g}^{-1}$ and $7 \text{ m}^2 \text{ g}^{-1}$, for L-MoN and H-MoN, respectively. The two phases show superconducting properties at $T < 12K$.

2.2.1.2 *High surface area MoS₂ precursor* The results are summed up in Table 4. High surface

Fig. 2. L- and H-MoN XRD powder patterns compared with &MoN JCPDS file.

δ -MoN ⁷ (P6 mc)	$Mo5N6$ (L-MoN)	$M\omega N$ (H-MoN)	
$a = 5.745 A$	$a' \sim a\sqrt{3}/2 = 4.893(1)$ Å	$a'' = 5.733(2)$ Å	
$c = 5.622 A$	$c' \sim 2$ c = 11.06(1) A	$c'' = 5.613(2)$ Å	
$V = 160.7 \text{ Å}^3$	$V' \sim 3/2 V_{\delta \text{-MoN}}$	$V'' = 159.8 \text{ Å}^3$	

Table 3. Unit cell parameters comparison of S-MoN, L-MoN and H-MoN

Table 4. Nitridation of high surface area $MoS₂$ at different temperatures

$T(^{\circ}C)$		$Sg(m^2g^{-1})$	
650	$MoS_2 + L-MoN$	140	
690	L-MoN	50	
750	$L-MON + H-MoN$	20	
800	$H-MON + L-MoN$	10	

area $MoS₂$ powders show an interesting reactivity with ammonia. Pure L-MoN is prepared with a relative high surface area. As seen before, formation of H-MoN occurs at higher temperatures. $MoS₂ + L-MoN$ mixtures show high Sg values which range from 200 to $50 \text{ m}^2 \text{ g}^{-1}$ depending on the proportion of nitride since the surface area of $MoS₂$ itself is not affected by the ammonia thermal treatment. Such values make the materials attractive for catalytic applications.

2.2.2 *Nitridation of other sulphides*

This method has been applied to the preparation of other transition metal nitrides. Table 5 indicates the main results obtained from tungsten, titanium and chromium sulphides.

Reaction between ammonia and commercial low surface area WS₂ (2 m² g⁻¹) occurs at $T > 850$ °C, so that systematic presence of tungsten metal in the reaction products cannot be avoided whatever the ammonia flow rate. On the contrary, the sulphide issued from NaSCN melt $(30 \text{ m}^2 \text{ g}^{-1})$ reacts advantageously at lower temperature to give, at 800° C, a pure tungsten nitride hexagonal phase with parameters:

At 900°C, another hexagonal phase is observed, accompanied by tungsten metal. This phase is closely related to the preceding one, as shown in Fig. 3:

$$
a' = 2.90
$$
Å $\sim a/\sqrt{3}$ and $c' = 15.30$ Å $\sim c$

Structural studies of these two phases are in progress.

Commercial TiS₂ and $Cr₂S₃$ powders react with ammonia thus forming TIN and CrN NaCl-type phases. When prepared at low temperature, the titanium nitride powders are characterized by high specific surface area up to $90 \text{ m}^2 \text{ g}^{-1}$ (Table 5).

Fig. 3. XRD powder patterns corresponding to nitridation of $W\bar{S}_2$ at 800 and 900°C.

$$
a = 5.01
$$
Å and $c = 15.26$ Å

Table 6. Chemical analysis of the $LiNb_3N_{4-\epsilon}$ hexagonal phase

Sample	(LECO method)		Experimental formulation	Density	
	$Oxygen(wt\%)$	Nitrogen $(wt\%)$	LiNb ₃ N _{4,s}	calc.	exp.
	いっ	15.5	LiNb ₃ N _{3.70}	6.92	- 6.7
	0.6	15.4	LiNb _{3.71}	6.93	6.6

Note lastly that nitrides can be directly elaborated in molten salt medium; such a preparation has been described elsewhere.^{1,2} In particular, a new modification of Mo₂N molybdenum nitride resulting from the reaction $MoCl₅ + Ca₃N₂$ in molten calcium chloride has been identified as isostructural with rutile-type related α -Mo₂C.

3 **Nitridation of Alkaline Niobates ANb30s (A = Li, Na, K)**

3.1 LiNb₃O₈ is nitrided in flowing ammonia and leads to different reaction products depending on the $KNb₃O₈$, whatever their preparation method, temperature. At 800°C, a new cubic NaCl-type behave identically, but different from $LiNb₃O₈$. At oxynitride phase is prepared with general formula a temperature as low as 600°C, X-ray diffraction $Li_{1-x}Nb_{3-3x}\Box_{4x}(O,N)_{4-y}\Box_{y}$ characterized by sys- indicates formation of a mixture containing the tematic presence of cationic and anionic vacancies in the unit cell.^{3,4} The cubic parameter **a**, refined
for $\text{Li}_{0.74}N_{2.22}\square_{1.04}O_{0.24}N_{2.79}\square_{0.97}$ composition, is for $Li_{0.74}N_{2.22}\square_{1.04}O_{0.24}N_{2.79}\square_{0.97}$ composition, is Consequently, the nitridation reactions have been equal to 4.326(1) Å corresponding to a random pursued at a higher temperature by using directly distribution in both subnetworks. At 1000° C, a $NaNbO₃$ and $KNbO₃$ as starting compounds.
purely nitrided phase is produced of composition Contrary to the lithium niobate, both react in purely nitrided phase is produced of composition Contrary to the lithium niobate, both react in close to $LiNb₃N₄$, i.e. without any evaporation of flowing ammonia with total evaporation of sodium lithium. Oxygen and nitrogen chemical analysis or potassium, thus leading to the same result: at results, given in Table 6, show very low oxygen 800° C, the pure binary nitride Nb_aN_s is prepared results, given in Table 6, show very low oxygen 800° C, the pure binary nitride Nb₄N₅ is prepared content and a slight nitrogen deficiency with respect as shown by chemical analysis results reported in content and a slight nitrogen deficiency with respect as shown by chemical analysis results reported in to LiNb₃N₄ formula. Figure 4 displays the X-ray Table 8. From the XRD powder pattern, displayed powder pattern of this ternary nitride which is on Fig. 5, a tetragonal unit cell is deduced with indexed with hexagonal parameters indicated in parameters indicated in Table 9. Nb₄N₅ is isostruc-
Table 7. LiNb₃N_{4-e} is isostructural with the tern-
tural with Ta₄N₅^{9,12} and T_{i4}O₅.¹³ The structure of ary phase $Li_{1-x}Ta_{3+x}N_4^8$ and with the binary nitride Ta_5N_6 .⁹ The structural arrangement is of a filled up $2H-MoS₂$ type consisting of alternate lay-

Fig. 4. XRD powder pattern of $LiNb₃N_{4-s}$.

ers formed, respectively, with nitrogen prisms and octahedra.6

3.2 $NaNb₃O₈$ and $KNb₃O₈$

Reactive NaN_3O_8 powder can be prepared by using the ion-exchange properties of KNb_3O_8 .^{10,11} This soft chemistry route consists in introducing $KNb₃O₈$ in a nitric solution (7N). A total exchange of potassium ions by hydronium ions leads to $HNb₃O₈, H₂O$ and subsequent addition of sodium hydroxide solution forms the hydrate $NaNb₃O₈$, 2.5H₂O. Finally, NaNb₃O₈ is isolated after drying at 130°C.

Heated under ammonia flow, $NaNb₃O₈$ and a temperature as low as 600° C, X-ray diffraction ternary oxide $ANbO₃$ ($A = Na$ or K) and a NaCltype oxynitride phase $Nb(O,N)$ (a = 4.31 Å). pursued at a higher temperature by using directly flowing ammonia with total evaporation of sodium Table 8. From the XRD powder pattern, displayed tural with $Ta_4N_5^{9,12}$ and Ti_4O_5 .¹³ The structure of $Nb₄N₅$ is built up from corner- and edge-sharing NbN₆ octahedra.⁶ Superconducting properties occur at $T < 10$ K.

Table 7. LiNb₃N₄ structure data

	LiNb ₂ N ₄	
	Space group: $P6_3$ mcm	
	$a = 5.2023(4)\AA$ $c = 10.362(1)\AA$ $c/a = 1.99$	$Z = 3$ $V = 242.9 \AA^{3}$
Atomic positions:	2 Li 1 Li + 3 Nb 6 Nb 12 N	2(b) 4(d) 6(g) 12(k)

Table 8. Chemical analysis of $Nb₄N₅$

Sample	(LECO method)		Formulation	Density	
	Oxygen $(wt\%)$	Nitrogen $(wt\%)$	NbN_{r}	obs.	calc.
	0.7	15.8_5	NbN _{1.25}	6.7	7.32
2	0.8	15.8 ₅	NbN _{1.25}	6.7	7.32
	0.8 ₅	$15-8$	NbN _{1.24}		
Calculated for $Nb4N5$:		15.86			

Fig. 5. XRD powder pattern of $Nb₄N₅$.

4 Conclusion

Among the methods presented here, nitridation of sulphide precursors is an original way to produce transition metal nitrides. New molybdenum and tungsten nitrides have been obtained by reaction of $MoS₂$ and $WS₂$ in flowing ammonia. This process can be applied to other starting products such as chromium or titanium sulphides. Preparation of high specific surface area precursors in thiocyanate

melt proves to be attractive in the sense that they influence the nitride formation and properties.

This study has shown the possibility to prepare nitride compounds from alkaline niobates Al_3O_8 with $A = \text{Li}$, Na and K. Under our conditions, only $LiNb₃O₈$ gives rise to the formation of a ternary nitride $LiNb₃N₄$. On the other hand, the reaction of $NaNb₃O₈$ and $KNb₃O₈$ with ammonia constitutes a new route to isolate, for the first time, bulk $Nb₄N₅$.

References

- 1. Marchand, R., Gouin, X., Tessier, F. and Laurent, Y., *Mat. Res. Sot. Symp. Proc., 1995, 368,* 15.
- *2.* Marchand, R., Gouin, X., Tessier, F. and Laurent, Y., In *The Chemistry of Transition Metal Carbides and Nitrides,* ed. S. T. Oyama. Blackie A and P, Glasgow, 1996,252.
- *3.* Assabaa-Boultif, R., Marchand, R. and Laurent, Y., *Ann. Chim. Fr. 1994, 19, 39.*
- *4.* Assabaa-Boultif, R., Marchand, R. and Laurent, Y., *Eur. Journal Solid State Inorg. Chem.* 1995, **32,** 1101,
- *5.* Kerridge, D. H. and Walker, S. J., *Journal Inorg Nucl.* Chem. 1977,39, 1579.
- *6.* Tessier, F. and Marchand, R. (to be published).
- *7.* Bezinge, A., Won, K., Muller, J., Lengauer, W. and
- *8.* Brokamp, Th. and Jacobs, H., *Journal Alloys Comp. 1992,* Ettmayer, P., *Solid State Commun. 1987, 63(2), 141.*
- *9. 183, 325.* Fontbonne, A. and Gilles, J. C., *Rev. Int. Hautes Temper. Refract. 1969,6, 181.*
- 10. Nedjar, R., Borel, M. M. and Raveau, B., *Mat. Res. Bull. 1985,20, 1291.*
- 11. Nedjar, R., Borel, M. M., Leclaire, A. and Raveau B., *Journal Solid State* Chem. 1987, 71, 182.
- 12. Terao, N., *Japan Journal Appl. Phys. 1971,10,248.*
- 13. Watanabe, D., Terasaki, O., Jostsons, A. and Castles J. R., *Journal Phys. Sot. Japan 1968,25, 292.*